

Faculty of: Computer Science Course: Bachelor of Computer Applications Semester: I Subject Code:4CS01ACP1 Subject Name: Introduction to Programming in C

Sr	Branch Code	n Subject Code	Subject Name	Teach hour Wee	rs/ ek	Credit		Evaluation Scheme/ Semester								
No				ThTu				Int	The ernal ssment	End Semester Exams		Prac Internal Assessment		End Semester		Total
								Marks	Duration	Marks	Duration	Marks	Duration	Marks	Duration	
1	2	4CS01ACP1	Introduction to Programming in C	4	4	8	6	15(SE) 15(CE)	1Hr.	70	$\frac{1}{2}$ Hrs	50(IP) 50(CE)	1 ½ Hrs.			200

AIM :

This course is aimed at enabling the students to

- Formulate simple algorithms for arithmetic and logical problems
- Translate the algorithms to programs (in C language)
- Test and execute the programs and correct syntax and logical errors
- Implement conditional branching, iteration and recursion
- Decompose a problem into functions and synthesize a complete program using divide and conquer approach
- Use arrays, pointers and structures to formulate algorithms and programs
- Apply programming to solve matrix addition and multiplication problems and searching and sorting problems
- Apply programming to solve simple numerical method problems, namely rot finding of function, differentiation of function and simple integration

COURSE CONTENTS

Unit I

- Introduction to machine, assembly and higher level language.
- Flowcharts/algorithms.
- History of C, Structure of C, C Tokens.
- Syntax and Semantic errors
- Variables and Data Types

Unit II

- Arithmetic expressions
- Type Conversion.
- Types of operators.
- Logical expressions
- Introduction to conditional branching

06 Hrs.

04 Hrs.

Unit III	06 Hrs.
• Types of Conditional branching	
• Iterative loops	
Unit IV	06 Hrs.
Arranging things using: Arrays.	
• Types of arrays	
Unit V	06 Hrs.
Character Arrays and strings.	
• Predefined Functions used in string operations.	
Unit VI	08 Hrs.
Introduction to User Define functions	
• Categories of User define functions.	
• Functions and parameter passing by values.	
Unit VII	06 Hrs.
Passing arrays to Functions	
• Call by reference and Recursion.	
Unit VIII	06 Hrs.
• Introduction and initialization of structure.	
• Introduction and initialization of pointers.	

• Pointers and arrays.

REFERENCE BOOKS:

Textbooks:

1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill

2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill

Reference Book: 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India

NPTEL COURSE (https://nptel.ac.in/):

1. C Programming and Assembly Language by Prof. Janakiraman Viraraghavan Course Link: https://nptel.ac.in/courses/106106210